Isobutylation of I with isobutyl bromide gave 65% of ethyl α-carbethoxy- α-cyano- γ-methylpentanoate (II, $\mathrm{R}=$ isobutyl), m. p. 120° (calcd. N, 12.38. Found: N, 11.97). Hydrolysis with hydrochloric acid gave 79% of $d l$-leucine, n. p. 278°.

Winthrop Chemtcal Company Noel F. Albertson Rensselaer, New York
B. F. Tullar Received February 19, 1945

B-STRAIN AND BASE STRENGTH

Sir:
The peculiar behavior of the methylamines-an increase in base strength from ammonia to methylamine, a further increase to dimethylamine, followed by a marked decrease to tri-methylamine-has been ascribed to B-strain. ${ }^{1}$

In the trimethylamine molecule B-strain results from the steric requirements of the three methyl groups crowded about the small nitrogen atom. It is postulated that these requirements are met by a spreading of the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angle to a value greater than the tetrahedral angle. The molecule therefore resists the addition of the acid to the free electron pair which would tend to reduce the bond angle to the tetrahedral value. Trimethylamine thus behaves as a much weaker base than it otherwise would.

Electron diffraction data reveal that the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ bond angle in trimethylphosphine ${ }^{2}$ is $100 \pm 4^{\circ}$. B-strain must therefore be absent. Consequently, the strength of the phosphine bases should increase regularly with the number of methyl groups: $\mathrm{PH}_{3}<\mathrm{CH}_{3} \mathrm{PH}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PH}<$ $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$.

It is possible to estimate from published data the relative strengths of the phosphine bases. Phosphine does not react with hydrochloric acid. Methylphosphine is absorbed by concentrated hydrochloric acid, but dilution decomposes the salt and liberates the free base. Neither dimethylphosphine nor trimethylphosphine may be liberated from its salts in this way-addition of alkali is necessary. ${ }^{3}$ It is thus evident that methylphosphine is a stronger base than phosphine itself, and that both dimethyl- and trimethylphosphine are stronger than the monomethyl derivative. However, no decision can be reached on the critical point-the relative strength of dimethyl- and trimethylphosphine. Accordingly, the hylrochlorides of these two bases were preparcd and their relative strength determined.

Dimethylphosphoniun chloride is a white crystalline solid of moderate volatility, exhibiting saturation pressures of 1.3 mm . and 46 mm . at 25 and 75° respectively. Trimethylphosphonium chloride is much less volatile. Its saturation pressure is but 0.4 mm . at 75° and 14 mm . at 120°.

[^0](Methylphosphonium chloride is an unstable compound of high volatility at room temperature. ${ }^{8}$) The conclusion drawn from these data, that trimethylphosphine is a considerably stronger base than dimethylphosphine, was verified by a competition experiment. Thus, a mixture of 14.0 cc . of each of the two phosphines and of hydrogen chloride yielded 13.9 cc . of uncombined phosphine which analyzed for 95% dimethylphosphine.

Although supplementary data involving other reference acids are desirable and are being procured, it is evident from these data that the strength of the phosphine bases (measured with hydrogen chloride) increases regularly with the number of methyl groups. This verification of prediction is strong support for the B-strain hypothesis. Certainly, no other simple explanation for the markedly different behavior of the methylamines and the methylphosphines is now available.

There is good reason to believe that B-strain is also an important factor in the carbon compounds and can account for many of the peculiar reactions of tertiary butyl and related highly branched derivatives. This point will be developed in subsequent publications.

The assistance afforded by two grants from the Penrose Fund of the American Philosophical Society is gratefully acknowledged.
Department of Chemistry
Wayne University
Detroit 1, Michigan
Herbert C. Brown
Received February 1, 1945

ON THE BIOGENESIS OF NORNICOTINE AND ANABASINE:

Sir:
The localization of the nicotine synthetic mechanism in the root of the tobacco plant (Nicotiana tabacum) has been established earlier by the use of reciprocal grafts and of sterile excised root cultures. ${ }^{2}$ Similar experiments recently performed in this Laboratory have shown that nornicotine in Nicotiana glutinosa and in N. glauca is formed only in the leaves and at the expense of nicotine translocated from the roots.

Specifically, it has been found that N. glutinosia leaves do not carry out total alkaloid synthesis, for these leaves contain none of the three major tobacco alkaloids when grown on tomato roots. Conversely, N. glutinosa roots produce not nornicotine but nicotine, for only nicotine is present in tomato shoots grown on N. glutinosa roots. In this respect the root systems of N. tubacum and N. glutinosa are equivalent and have been experimentally interchanged without resulting marked changes in the alkaloid composition of the leaves. It is concluded, therefore, that the leaves of N. glutinosa contain a mechanism capable of convert-
(1) This work was supported in part by the Rockefeller Foundation.
(2) Dawson. Am. J. Botany, 29, 66 (1942): 29, 813 (1942).
ing nicotine to nornicotine probably by transmethylation.

Vicolicina glauca contains principally anabasine. Whell grafted to N. fabacum roots ${ }^{\text {i }}$ or when hybridized with the latter species ${ }^{4}$ the leaves have been reported to contain predominantly anabasine. Repetition of these experiments in this laboratory has disclosed that the supposed anabasine of the grafts and of the hybrids is actually a mixture of anabasine and nornicotine with nsually mere nornicotine than anabasine. The difficult separation of anabasine from nornicotine ill mintures of the two was accomplished by refeated fractional crystallizations of the picrates and of the methylated picrates after removal of ricotine by the method of Smith and Smith. ${ }^{4}$ To show that the nornicotine present in the leaves of these plants actually arose in situ and at the expense of micotine translocated from the roots, \therefore. glauca scions were grafted to N. tabacum roots. After a period of growth, a tomato scion was graited to the apex of each N, glanca scion. Ultimately, these three-ticred plants were examined for alkaloids. The N. glauca scions contained one part of nicotine to fifty parts of mixed anabasine and nornicotine, while the tomato scions contained only nicotine.

It is now clear that the replacement of the methyl group of nicotine in the plant leaf by the hydrogen atom of nornicotine accounts for the increase in secondary amine content (previously attributed to anabasine ${ }^{4}$) of such graft combinafions and genetienl hybrids. It follows that expectations ${ }^{4}$ of the development of hybrids between N. tabacum and N. glauca that would be suitable for the commercial extraction of anabasine are without justification.
(3) Schmuck, Kestoff and Bormzinat, Cumpt reml ucol sa. fr. K. $\therefore . S .(D, d i d y), 25,4 T 5(1434)$.

Biology mipartment
Princeton [iniversity
Privertory New Jersey Ray P. Jallisod Rachivel Fiblirgary -, 1!45

RESOLUTION OF 9-HYDROXYFLUORENE-2CARBOXYLIC ACID

Sir:

The question whether fluorene hats a folded or Mhanar structure is a subject of controversy. ${ }^{1}$ it minght be thought that the classical methools of stereochemistry should furnish an answer but their application has been precluded by the inability to resolve huorene compounds containing a 9 -asymmetric carbon atom."

We have now succeeded in resolving 9 -hydroxy-fluorene-0-carboxylic acid into its dextro and levo isomers.
(1) Rityesctul ant Ray, Chem. Kra, 23, 358 (1938)

To 11.3 g . of 9 -hydroxyfluorene-2-carboxylic acid (m. p. 240°) in 125 ce. of 95% ethanol was added 10.7 g . of strychnine in 125 cc . of chlarofirm. The resulting solution was distilled to remove the grenter part of the chloroform. It was then filtered and placed in a pan of hot water andi the whole allowed to come to room temperature The following morming crystals in the form of rosets, weighing 13.2 g., were obtained. There, recrystallized from 700 cc . of ethanol, sintered at tho and melted at 20.3°. This strychmime salt Was dissolved in a mixture of 100 ece of ethanol and 200 ec. of $1 / \%$ sodium hydroxide. This was prured into a liter of water containing 20 cc of $1 ;$ Vhydrochloric acid. The white fluffy precipitate w:1s recrystallized from 60 ce . of ethanol and fine needles melting at $20: 3^{\circ}$ (block) were obtained.

Anal. Calcl. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{3}:$ mol. wt., $2=3$.
 ${ }^{\text {" }}$ quivalent weight, 220 (

These had the following rotations for red, yelI w and green light for a solution of 0.7000 g . in in

 $|\alpha|^{25}{ }_{559.3}+39.6^{\circ} ;[\alpha]^{25} 566+49.6^{\circ}$.
The levo isomer was isolated similarly. It melted at 260° (block). A solution of 0.7200 gr. in 50 ec of ethanol in a 2 -din. tube gave: α^{225}

Itpartment of Cliemistre Fravele liaki. RN INIvirsity of Cincininati
CINCN:AT1 21 , Omo

INTRODUCTION OF THE ANGULAR METHYL GROUP

 Sir:In a previous report ${ }^{1}$ we described the preparation of cis- and trans-9-methyldecalone-1, nsing Koebuer and Robinson's excellent method for directing the alkylation to the angular position, complemented by a scheme for remosal of the protective arylidene group. Althongh this affords a good source of these particobar ketones, there are, as recently pointed out by Bireh and Robinson, ${ }^{*}$ certain objections to our inethod from the point of view of more general thplicability. We have been engaged for sonne time in a searelt for another protective group more easily remowed than the arylidene group, and are repurting sombe of our findings now, becanse of the aplearance of work along somewhat similar lines resutly annuntued by the English womers."

The condensation of decalone-1 with ethyl formate according to a previously described procedure gave exerllemt yitals of the enderioss

[^1]
[^0]: (1) Brawn, Bartholomay and Taylor. This Joirnnal. 66, 435 (1:144).
 (2) Springallanil Brockway ibil., 60, 19 fi (11138).
 (3) Hy,fmann, B_{ℓ}., 4, fill (1871).

[^1]:

